Configuration

We produced the Multimodal Embedding Model (MEM) architecture, starting from the one proposed by Husain et al. for the CodeSearchNet challenge.

MEM

We publicly release the source code:

src-finetuning.tar.xz

Hyperparameters

The following table shows the fine-tuning hyperparameters compared to the ones used by Husain et al.

ParameterHusain et al.Our approach
Learning rate0.00050.0005
Learning rate decay0.980.98
Momentum0.850.85
Dropout probability0.10.1
Maximum sequence length (query)3030
Maximum sequence length (code)200256
OptimizerAdamLAMB
Maximum training epochs50010
Patience510
Batch size45032

Then, we report the $\text{BERT}$-specific hyperparameters that we used for both the code encoder and the query encoder.

ParameterHusain et al.Our approach
Activation functiongelugelu
Attention heads88
Hidden layers33
Hidden size128768
Intermediate size5123,072
Vocabulary size10,00030,522